这篇文章主要介绍了解决R语言 数据不平衡的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
R语言解决数据不平衡问题
一、项目环境
开发工具:RStudio
R:3.5.2
相关包:dplyr、ROSE、DMwR
二、什么是数据不平衡?为什么要处理数据不平衡?
首先我们要知道的第一个问题就是“什么是数据不平衡”,从字面意思上进行解释就是数据分布不均匀。在我们做有监督学习的时候,数据中有一个类的比例远大于其他类,或者有一个类的比值远小于其他类时,我们就可以认为这个数据存在数据不平衡问题。
那么这样的一个问题会对我们后续的分析工作带来怎样的影响呢?我举个简单的例子,或许大家就明白了。
假设我们现在需要训练一个模型来分辨人群中那个人是恐怖分子。那么现在给到我们1万个人员的数据,在做分析之前其实我们就很清楚,一群人中恐怖分子的比例肯定是要远小于普通人的比例的。
那么假如在这1万个人中只有一个是恐怖分子,那么恐怖分子与正常人的比例就是 9999 : 1 。
那么如果我们不进行任何处理就直接进行有监督学习的话,那么模型只需要将所有人数据都分类为正常人,模型的准确率就能达到99.99%。而这样的模型显然是没有意义的。
因为基本上说有可能存在的恐怖分子的特征基本都被模型给忽略了,这也就说明了为什么要处理数据不平衡问题。
三、 常见的数据不平衡处理方法
以下是几种比较常见的处理数据不平衡的方法:
1、欠采样法(Undersampling)
2、过采样法(Oversampling)
3、人工数据合成法(Synthetic Data Generation)
4、代价敏感学习法(Cose Sensitive Learning)
【注】:本文主要以实现为主,因此不对上述方法进行过多的讲解。
在处理数据之前,我们先看一下需要处理的数据分布的情况。
> table(data$classification)
-8 1 2 3 4 5
12 104 497 1158 4817 1410
> prop.table(table(data$classification))
-8 1 2 3 4 5
0.001500375 0.013003251 0.062140535 0.144786197 0.602275569 0.176294074
1、 欠采样
> table(under$classification)
4 -8
28 12
> table(down$classification)
-8 4
12 12
【注】:欠采样是无放回的采样。
2、 过采样
> table(under$classification)
4 -8
4817 4785
> table(down$classification)
-8 4
4817 4817
3、人工数据合成法(Synthetic Data Generation)
> table(rose$classification)
4 -8
2483 2346
> table(down$classification)
-8 4
432 1260
【注】:相较于前两种方法而言,人工合成法既不会像过采样容易导致过拟合问题,也不会出现欠采样大量丢失信息的问题。
4、代价敏感学习法(Cose Sensitive Learning)
【注】:还没想好怎么写。。。。。
三、 结语
本文之所以都只拿两个分类在进行分析,是因为上面提到的用于解决数据不平衡问题的函数,基本上都是针对二分类问题的。当导入的数据中有大于两个分类时,函数就会报错。
但是在实际分析的过程中,其实我们更经常遇到的时多分类问题,这是我们就需要将多分类问题转化为二分类问题,将各个分类两两进行比较才能更好的解决数据不平衡的问题。