pandas dataframe drop函数介绍 使用drop函数删除dataframe的某列或某行数据: drop(labels, axis=0, level=None, inplace=False, errors='raise') -- axis为0时表示删除行,axis为1时表示删除列 常用参数如下: import pandas as pd import numpy as np data = {'Country':['China','US','Japan','EU','
使用drop函数删除dataframe的某列或某行数据:
drop(labels, axis=0, level=None, inplace=False, errors='raise')
-- axis为0时表示删除行,axis为1时表示删除列
常用参数如下:
import pandas as pd
import numpy as np
data = {'Country':['China','US','Japan','EU','UK/Australia', 'UK/Netherland'],
'Number':[100, 150, 120, 90, 30, 2],
'Value': [1, 2, 3, 4, 5, 6],
'label': list('abcdef')}
df = pd.DataFrame(data)
print("df原数据:\n", df, '\n')
out:
df原数据:
Country Number Value label
0 China 100 1 a
1 US 150 2 b
2 Japan 120 3 c
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
删除单列:
print(df.drop('Country', axis = 1))
out:
Number Value label
0 100 1 a
1 150 2 b
2 120 3 c
3 90 4 d
4 30 5 e
5 2 6 f
删除多列:
print(df.drop(['Country','Number'], axis = 1))
out:
Value label
0 1 a
1 2 b
2 3 c
3 4 d
4 5 e
5 6 f
删除单行:
print(df.drop(labels = 1, axis = 0))
out:
Country Number Value label
0 China 100 1 a
2 Japan 120 3 c
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
删除多行:
print(df.drop(labels = [1,2], axis = 0))
out:
Country Number Value label
0 China 100 1 a
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
使用range函数删除连续多行:
print(df.drop(labels = range(1,3), axis = 0))
out:
Country Number Value label
0 China 100 1 a
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
到此这篇关于pandas dataframe drop函数介绍的文章就介绍到这了,更多相关pandas dataframe drop 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
沃梦达教程
本文标题为:pandas dataframe drop函数介绍
猜你喜欢
- CentOS7 安装 Python3.6 2023-09-04
- python线程池ThreadPoolExecutor与进程池ProcessPoolExecutor 2023-09-04
- python中defaultdict用法实例详解 2022-10-20
- python中列表添加元素的几种方式(+、append()、ext 2022-09-02
- Python 保存数据的方法(4种方法) 2023-09-04
- Python实现将DNA序列存储为tfr文件并读取流程介绍 2022-10-20
- Python Pandas如何获取和修改任意位置的值(at,iat,loc,iloc) 2023-08-04
- 在centos6.4下安装python3.5 2023-09-04
- Python之路-Python中的线程与进程 2023-09-04
- windows安装python2.7.12和pycharm2018教程 2023-09-03