redis4.0.9 SET\GET方法从哪里开始server.c里面有每个redis命令对应的执行方法如struct redisCommand redisCommandTable[] = {{module,moduleCommand,-2,as,0,NULL,0,0,0,0,0},{get,getCommand,2,rF,0,N...
redis4.0.9 SET\GET方法
从哪里开始
server.c里面有每个redis命令对应的执行方法
如
struct redisCommand redisCommandTable[] = {
{"module",moduleCommand,-2,"as",0,NULL,0,0,0,0,0},
{"get",getCommand,2,"rF",0,NULL,1,1,1,0,0},
{"set",setCommand,-3,"wm",0,NULL,1,1,1,0,0},
{"setnx",setnxCommand,3,"wmF",0,NULL,1,1,1,0,0},
{"setex",setexCommand,4,"wm",0,NULL,1,1,1,0,0},
{"psetex",psetexCommand,4,"wm",0,NULL,1,1,1,0,0},
...
}
set命令对应setCommand方法,get命令对应getCommand方法
Set in t_string.c
先来看一下setCommand方法,了解一下set命令的流程
/* SET key value [NX] [XX] [EX <seconds>] [PX <milliseconds>] */
void setCommand(client *c) {
int j;
robj *expire = NULL;
int unit = UNIT_SECONDS;
int flags = OBJ_SET_NO_FLAGS;
for (j = 3; j < c->argc; j++) {
char *a = c->argv[j]->ptr;
robj *next = (j == c->argc-1) ? NULL : c->argv[j+1];
if ((a[0] == 'n' || a[0] == 'N') &&
(a[1] == 'x' || a[1] == 'X') && a[2] == '\0' &&
!(flags & OBJ_SET_XX))
{
flags |= OBJ_SET_NX;
} else if ((a[0] == 'x' || a[0] == 'X') &&
(a[1] == 'x' || a[1] == 'X') && a[2] == '\0' &&
!(flags & OBJ_SET_NX))
{
flags |= OBJ_SET_XX;
} else if ((a[0] == 'e' || a[0] == 'E') &&
(a[1] == 'x' || a[1] == 'X') && a[2] == '\0' &&
!(flags & OBJ_SET_PX) && next)
{
flags |= OBJ_SET_EX;
unit = UNIT_SECONDS;
expire = next;
j++;
} else if ((a[0] == 'p' || a[0] == 'P') &&
(a[1] == 'x' || a[1] == 'X') && a[2] == '\0' &&
!(flags & OBJ_SET_EX) && next)
{
flags |= OBJ_SET_PX;
unit = UNIT_MILLISECONDS;
expire = next;
j++;
} else {
addReply(c,shared.syntaxerr);
return;
}
}
c->argv[2] = tryObjectEncoding(c->argv[2]);
setGenericCommand(c,flags,c->argv[1],c->argv[2],expire,unit,NULL,NULL);
}
- 可以看到是从第4(数组下标为3)个参数开始解析参数的,目的是判断出当前set操作,是NX|XX|EX|PX,如果没有任何命令,会报语法错误
- encoding第3个参数,这是存储的值所在的参数
- set操作执行
tryObjectEncoding会根据类型将值进行encoding,这里包含了很多优化操作,如字符串类型,实际上保存的是一个20位内的数字,会用long来存,原因是long占用的空间更少,这个方法只encoding OBJ_STRING类型
/* Try to encode a string object in order to save space */
robj *tryObjectEncoding(robj *o) {
long value;
sds s = o->ptr;
size_t len;
/* Make sure this is a string object, the only type we encode
* in this function. Other types use encoded memory efficient
* representations but are handled by the commands implementing
* the type. */
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
/* We try some specialized encoding only for objects that are
* RAW or EMBSTR encoded, in other words objects that are still
* in represented by an actually array of chars. */
if (!sdsEncodedObject(o)) return o;
/* It's not safe to encode shared objects: shared objects can be shared
* everywhere in the "object space" of Redis and may end in places where
* they are not handled. We handle them only as values in the keyspace. */
if (o->refcount > 1) return o;
/* Check if we can represent this string as a long integer.
* Note that we are sure that a string larger than 20 chars is not
* representable as a 32 nor 64 bit integer. */
len = sdslen(s);
if (len <= 20 && string2l(s,len,&value)) {
/* This object is encodable as a long. Try to use a shared object.
* Note that we avoid using shared integers when maxmemory is used
* because every object needs to have a private LRU field for the LRU
* algorithm to work well. */
if ((server.maxmemory == 0 ||
!(server.maxmemory_policy & MAXMEMORY_FLAG_NO_SHARED_INTEGERS)) &&
value >= 0 &&
value < OBJ_SHARED_INTEGERS)
{
decrRefCount(o);
incrRefCount(shared.integers[value]);
return shared.integers[value];
} else {
if (o->encoding == OBJ_ENCODING_RAW) sdsfree(o->ptr);
o->encoding = OBJ_ENCODING_INT;
o->ptr = (void*) value;
return o;
}
}
/* If the string is small and is still RAW encoded,
* try the EMBSTR encoding which is more efficient.
* In this representation the object and the SDS string are allocated
* in the same chunk of memory to save space and cache misses. */
if (len <= OBJ_ENCODING_EMBSTR_SIZE_LIMIT) {
robj *emb;
if (o->encoding == OBJ_ENCODING_EMBSTR) return o;
emb = createEmbeddedStringObject(s,sdslen(s));
decrRefCount(o);
return emb;
}
/* We can't encode the object...
*
* Do the last try, and at least optimize the SDS string inside
* the string object to require little space, in case there
* is more than 10% of free space at the end of the SDS string.
*
* We do that only for relatively large strings as this branch
* is only entered if the length of the string is greater than
* OBJ_ENCODING_EMBSTR_SIZE_LIMIT. */
if (o->encoding == OBJ_ENCODING_RAW &&
sdsavail(s) > len/10)
{
o->ptr = sdsRemoveFreeSpace(o->ptr);
}
/* Return the original object. */
return o;
}
方法只encoding String类型的值,目的是压缩字符串占用的空间
如果不是指定可压缩类型,直接返回
#define sdsEncodedObject(objptr) (objptr->encoding == OBJ_ENCODING_RAW || objptr->encoding == OBJ_ENCODING_EMBSTR)
- 共享的对象不压缩
redis缓存了一定长度的数字 shared.integers[j] 根据 #define OBJ_SHARED_INTEGERS 10000,可以发现,数字范围0~10000,在redis中是共享的,不会分配新的内存,因此,设置10w个key的值为10000以内,value占用的空间是不会变化的
关于为什么只能encoding OBJ_STRING,原因是Redis协议规范中,约定了客户端发给服务端的命令,是一个bulk string数组组成的????代码里面放置的复杂对象,如何变成string??????
Sending commands to a Redis Server
Now that you are familiar with the RESP serialization format, writing an implementation of a Redis client library will be easy. We can further specify how the interaction between the client and the server works:
A client sends to the Redis server a RESP Array consisting of just Bulk Strings.
A Redis server replies to clients sending any valid RESP data type as reply.
setKey(c->db,key,val);
setKey方法执行的set操作
/* High level Set operation. This function can be used in order to set
* a key, whatever it was existing or not, to a new object.
*
* 1) The ref count of the value object is incremented.
* 2) clients WATCHing for the destination key notified.
* 3) The expire time of the key is reset (the key is made persistent).
*
* All the new keys in the database should be craeted via this interface. */
void setKey(redisDb *db, robj *key, robj *val) {
if (lookupKeyWrite(db,key) == NULL) {
dbAdd(db,key,val);
} else {
dbOverwrite(db,key,val);
}
incrRefCount(val);
removeExpire(db,key);
signalModifiedKey(db,key);
}
在lookupKeyWrite时,会先检查expireIfNeeded
/* Lookup a key for write operations, and as a side effect, if needed, expires
* the key if its TTL is reached.
*
* Returns the linked value object if the key exists or NULL if the key
* does not exist in the specified DB. */
robj *lookupKeyWrite(redisDb *db, robj *key) {
expireIfNeeded(db,key); //获取值时驱动检查过期时间,如果未过期,则什么都不处理,返回0,如果过期了,先把过期事件扩散到slaves或者aof文件,就删除key
//如果server端启动lazyfree_lazy_expire,则会异步删除,否则同步删除key,
return lookupKey(db,key,LOOKUP_NONE);
}
从这里可以看出,redis的key如果设置了过期时间,并不是到了时间,立即就会被移除,而是基于访问时先检查来做的,先判断是否过期,过期就删除(ps:也有通过一些算法来主动删除key)
/* This function is called when we are going to perform some operation- in a given key, but such key may be already logically expired even if
- it still exists in the database. The main way this function is called
- is via lookupKey*() family of functions.
- The behavior of the function depends on the replication role of the
- instance, because slave instances do not expire keys, they wait
- for DELs from the master for consistency matters. However even
- slaves will try to have a coherent return value for the function,
- so that read commands executed in the slave side will be able to
- behave like if the key is expired even if still present (because the
- master has yet to propagate the DEL).
- In masters as a side effect of finding a key which is expired, such
- key will be evicted from the database. Also this may trigger the
- propagation of a DEL/UNLINK command in AOF / replication stream.
- The return value of the function is 0 if the key is still valid,
- otherwise the function returns 1 if the key is expired. */
int expireIfNeeded(redisDb db, robj key) {
mstime_t when = getExpire(db,key);
mstime_t now;if (when < 0) return 0; /* No expire for this key */ /* Don't expire anything while loading. It will be done later. */ if (server.loading) return 0; /* If we are in the context of a Lua script, we pretend that time is * blocked to when the Lua script started. This way a key can expire * only the first time it is accessed and not in the middle of the * script execution, making propagation to slaves / AOF consistent. * See issue #1525 on Github for more information. */ now = server.lua_caller ? server.lua_time_start : mstime(); /* If we are running in the context of a slave, return ASAP: * the slave key expiration is controlled by the master that will * send us synthesized DEL operations for expired keys. * * Still we try to return the right information to the caller, * that is, 0 if we think the key should be still valid, 1 if * we think the key is expired at this time. */ if (server.masterhost != NULL) return now > when; /* Return when this key has not expired */ if (now <= when) return 0; /* Delete the key */ server.stat_expiredkeys++; propagateExpire(db,key,server.lazyfree_lazy_expire); //把过期事件扩散到slaves或者aof文件 notifyKeyspaceEvent(NOTIFY_EXPIRED, "expired",key,db->id); //通知key为空事件,NOTIFY_KEYSPACE,NOTIFY_KEYEVENT return server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) : dbSyncDelete(db,key);
}
- 先notify后delete会不会不安全,如果redis是单线程的,那自然就安全了
疑点:redis如果完全是多路复用 + 单线程,那是不是在multi命令时,不需要watch某个key了??
/* The API provided to the rest of the Redis core is a simple function:- notifyKeyspaceEvent(char event, robj key, int dbid);
- 'event' is a C string representing the event name.
- 'key' is a Redis object representing the key name.
'dbid' is the database ID where the key lives. /
/* If any modules are interested in events, notify the module system now.
void notifyKeyspaceEvent(int type, char event, robj key, int dbid) {
sds chan;
robj chanobj, *eventobj;
int len = -1;
char buf[24];- This bypasses the notifications configuration, but the module engine
- will only call event subscribers if the event type matches the types
- they are interested in. */
moduleNotifyKeyspaceEvent(type, event, key, dbid);
/* If notifications for this class of events are off, return ASAP. */
if (!(server.notify_keyspace_events & type)) return;eventobj = createStringObject(event,strlen(event));
/* keyspace@:
/* keyevent@:
删除key,dict结构
dbSyncDelete方法最终会执行删除key操作dictDelete
可见dic的数据结构类型java的hashMap,为数组+链表结构(ps:这只是其中一种结构,并非全部)
/* Search and remove an element,由此可见dic的数据结构类型java的hashMap,为数组+链表结构 */
static int dictDelete(dict *ht, const void *key) {
unsigned int h;
dictEntry *de, *prevde;
if (ht->size == 0)
return DICT_ERR;
h = dictHashKey(ht, key) & ht->sizemask;
de = ht->table[h];
prevde = NULL;
while(de) {
if (dictCompareHashKeys(ht,key,de->key)) {
/* Unlink the element from the list */
if (prevde)
prevde->next = de->next;
else
ht->table[h] = de->next;
dictFreeEntryKey(ht,de);
dictFreeEntryVal(ht,de);
free(de);
ht->used--;
return DICT_OK;
}
prevde = de;
de = de->next;
}
return DICT_ERR; /* not found */
}
- 通过hashKey 和 sizemask 与操作,获取数组下标
- 删除entry后,会释放key和值占用的空间
dicthashtable结构
/* This is our hash table structure. Every dictionary has two of this as we
* implement incremental rehashing, for the old to the new table. */
typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
typedef struct dict {
dictType *type; //不同的type,会有不同的处理函数,通过type来找到多态方法
void *privdata;
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
} dict;
dictExpand
两步走
- 分配新的hash表
执行rehash,将老的hash表的值,移动到新的hash表中
/* Expand or create the hash table /
int dictExpand(dict d, unsigned long size)
{
dictht n; /* the new hash table */
unsigned long realsize = _dictNextPower(size); //保证realsize为2的倍数/* the size is invalid if it is smaller than the number of * elements already inside the hash table */ if (dictIsRehashing(d) || d->ht[0].used > size) return DICT_ERR; /* Rehashing to the same table size is not useful. */ if (realsize == d->ht[0].size) return DICT_ERR; /* Allocate the new hash table and initialize all pointers to NULL */ n.size = realsize; n.sizemask = realsize-1; n.table = zcalloc(realsize*sizeof(dictEntry*)); n.used = 0; /* Is this the first initialization? If so it's not really a rehashing * we just set the first hash table so that it can accept keys. */ if (d->ht[0].table == NULL) { d->ht[0] = n; return DICT_OK; } /* Prepare a second hash table for incremental rehashing */ d->ht[1] = n; //正在rehash,把新的hash表赋给ht[1] d->rehashidx = 0; return DICT_OK;
}
- 先判断新的size是否大于当前的size,如果不是,则返回错误
- 修改dict的size,sizemask为size-1,原因是数组下标是从0开始的
- 重新分配内存
- 如果是第一次初始化,分配内存后就直接返回
非初始化时,为下次rehashing准备
rehash 操作
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
int empty_visits = n*10; /* Max number of empty buckets to visit. */
if (!dictIsRehashing(d)) return 0;
while(n-- && d->ht[0].used != 0) {
dictEntry *de, *nextde;
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(d->ht[0].size > (unsigned long)d->rehashidx);
while(d->ht[0].table[d->rehashidx] == NULL) {
d->rehashidx++;
if (--empty_visits == 0) return 1;
}
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while(de) {
uint64_t h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
}
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;
}
/* Check if we already rehashed the whole table... */
if (d->ht[0].used == 0) {
zfree(d->ht[0].table);
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;
return 0;
}
/* More to rehash... */
return 1;
}
根据方法参数n,可以发现rehash操作是慢慢进行的,而不是一蹴而就的,实际上也是这样的,上层方法会根据每执行n次的耗时,和预估的耗时进行比较,如果这次while循环的总的执行时间超过预估时间,就break
int dictRehashMilliseconds(dict *d, int ms) {
long long start = timeInMilliseconds();
int rehashes = 0;
while(dictRehash(d,100)) {
rehashes += 100;
if (timeInMilliseconds()-start > ms) break;
}
return rehashes;
}
可以参见博客:https://blog.csdn.net/u012658346/article/details/51316029总的来说,就是把ht[0]中所有值移动到ht[1]中,再把ht[1]赋给ht[0]
lookupKey
讲述了较多dict的数据结构,现在继续set方法相关的代码
/* Low level key lookup API, not actually called directly from commands
* implementations that should instead rely on lookupKeyRead(),
* lookupKeyWrite() and lookupKeyReadWithFlags(). */
robj *lookupKey(redisDb *db, robj *key, int flags) {
dictEntry *de = dictFind(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/* Update the access time for the ageing algorithm.
* Don't do it if we have a saving child, as this will trigger
* a copy on write madness. */
//当前没有rdb备份进程、aof进程,且非 不更新key last access time时,更新last accesstime
if (server.rdb_child_pid == -1 &&
server.aof_child_pid == -1 &&
!(flags & LOOKUP_NOTOUCH))
{
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
updateLFU(val); //走lfu算法
} else {
val->lru = LRU_CLOCK(); //走lru算法
}
}
return val;
} else {
return NULL;
}
}
关键点
- 找key的值,如果没找到就返回NULL
- LFU(Least Frequently Used):缓存淘汰算法之最少使用原则
LRU:淘汰最少被访问的key
参考https://blog.csdn.net/qq_35440678/article/details/53453107
LFU算法
淘汰最少被访问的key算法成为:LFU(Least Frequently Used),将来要被淘汰腾出新空间给新key。
理论上LFU的思想相当简单,只需要给每个key加一个访问计数器。每次访问就自增1,所以也就很容易知道哪些key被访问更频繁。
当然,LFU也会带起其他问题,不单单是针对redis,对于LFU实现:
1、不能使用“移除顶部元素”的方式,keys必须要根据访问计数器进行排序。每访问一次就得遍历所有key找出访问次数最少的key。
2、LFU不能仅仅是只增加每一此访问的计数器。正如我们所讲的,访问模式改变随时变化,因此一个有高访问次数的key,后面很可能没有人继续访问它,因此我们的算法必须要适应超时的情况。
在redis中,第一个问题很好解决:我们可以在LRU的方式一样:随机在缓存池中选举,淘汰其中某项。第二个问题redis还是存在,因此一般对于LFU的思想必须使用一些方式进行减少,或者定期把访问计数器减半。
更新LFU计算器结构
/* Update LFU when an object is accessed.
* Firstly, decrement the counter if the decrement time is reached.
* Then logarithmically increment the counter, and update the access time. */
void updateLFU(robj *val) {
unsigned long counter = LFUDecrAndReturn(val);
counter = LFULogIncr(counter);
val->lru = (LFUGetTimeInMinutes()<<8) | counter;
}
redis中,为每个对象额外新增24bit,来存放 上次缩减时间和计数器
16bit : last decr time //时间戳是精确到分钟
8bit:计数器,8bit最大255,如果访问100w此呢,根据随机因子,基于概率来进行计数器+1,服务长时间运行时,概率是趋同的
实际的counter:
你可以配置计数器增长的速率,如果使用默认配置,会发生:
- 100次访问后,计数器=10;
- 1000次访问是是18;
- 10万次访问是142;
100万次访问后达到255,不再继续增长;
/* Logarithmically increment a counter. The greater is the current counter value- the less likely is that it gets really implemented. Saturate it at 255. /
uint8_t LFULogIncr(uint8_t counter) {
if (counter == 255) return 255;
double r = (double)rand()/RAND_MAX;
double baseval = counter - LFU_INIT_VAL; //LFU_INIT_VAL:5,初始化次数,key被添加就会有5次
if (baseval < 0) baseval = 0;
double p = 1.0/(basevalserver.lfu_log_factor+1); //server.lfu_log_factor:10
if (r < p) counter++;
return counter;
}
- 16 bits. The returned time is suitable to be stored as LDT (last decrement
- time) for the LFU implementation. */
unsigned long LFUGetTimeInMinutes(void) {
return (server.unixtime/60) & 65535; //由此可见,unixtime的单位是秒
}
- Firstly, decrement the counter if the decrement time is reached.
- Then logarithmically increment the counter, and update the access time. /
void updateLFU(robj val) {
unsigned long counter = LFUDecrAndReturn(val);
counter = LFULogIncr(counter);
val->lru = (LFUGetTimeInMinutes()<<8) | counter;
}
- the less likely is that it gets really implemented. Saturate it at 255. /
接着看find
#define dictGetVal(he) ((he)->v.val)
dictEntry数据结构
dict.h
typedef struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64; //过期时间,到这个时间就过期了
double d;
} v;
struct dictEntry *next;
} dictEntry;
setExpire(c,c->db,key,mstime()+milliseconds)
/* Set an expire to the specified key. If the expire is set in the context
* of an user calling a command 'c' is the client, otherwise 'c' is set
* to NULL. The 'when' parameter is the absolute unix time in milliseconds
* after which the key will no longer be considered valid. */
void setExpire(client *c, redisDb *db, robj *key, long long when) {
dictEntry *kde, *de;
/* Reuse the sds from the main dict in the expire dict */
kde = dictFind(db->dict,key->ptr);
serverAssertWithInfo(NULL,key,kde != NULL);
de = dictAddOrFind(db->expires,dictGetKey(kde));
dictSetSignedIntegerVal(de,when);
int writable_slave = server.masterhost && server.repl_slave_ro == 0;
if (c && writable_slave && !(c->flags & CLIENT_MASTER))
rememberSlaveKeyWithExpire(db,key);
}
AddOrFind
/* Add or Find:
* dictAddOrFind() is simply a version of dictAddRaw() that always
* returns the hash entry of the specified key, even if the key already
* exists and can't be added (in that case the entry of the already
* existing key is returned.)
*
* See dictAddRaw() for more information. */
dictEntry *dictAddOrFind(dict *d, void *key) {
dictEntry *entry, *existing;
entry = dictAddRaw(d,key,&existing);
return entry ? entry : existing;
}
#define dictSetSignedIntegerVal(entry, _val_) \
do { (entry)->v.s64 = _val_; } while(0)
get命令
void getCommand(client *c) {
getGenericCommand(c);
}
int getGenericCommand(client *c) {
robj *o;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.nullbulk)) == NULL)
return C_OK;
if (o->type != OBJ_STRING) {
//这个error并非是指响应的value type判断,而是数据类型的type判断,如这个key本身对应的type是list、set,不能直接用get命令
addReply(c,shared.wrongtypeerr);
return C_ERR;
} else {
addReplyBulk(c,o);
return C_OK;
}
}
robj *lookupKeyReadOrReply(client *c, robj *key, robj *reply) {
robj *o = lookupKeyRead(c->db, key);
if (!o) addReply(c,reply);
return o;
}
/* Like lookupKeyReadWithFlags(), but does not use any flag, which is the
* common case. */
robj *lookupKeyRead(redisDb *db, robj *key) {
return lookupKeyReadWithFlags(db,key,LOOKUP_NONE);
}
/* Lookup a key for read operations, or return NULL if the key is not found
* in the specified DB.
*
* As a side effect of calling this function:
* 1. A key gets expired if it reached it's TTL.
* 2. The key last access time is updated.
* 3. The global keys hits/misses stats are updated (reported in INFO).
*
* This API should not be used when we write to the key after obtaining
* the object linked to the key, but only for read only operations.
*
* Flags change the behavior of this command:
*
* LOOKUP_NONE (or zero): no special flags are passed.
* LOOKUP_NOTOUCH: don't alter the last access time of the key.
*
* Note: this function also returns NULL is the key is logically expired
* but still existing, in case this is a slave, since this API is called only
* for read operations. Even if the key expiry is master-driven, we can
* correctly report a key is expired on slaves even if the master is lagging
* expiring our key via DELs in the replication link. */
robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) {
robj *val;
if (expireIfNeeded(db,key) == 1) {
/* Key expired. If we are in the context of a master, expireIfNeeded()
* returns 0 only when the key does not exist at all, so it's safe
* to return NULL ASAP. */
if (server.masterhost == NULL) return NULL;
/* However if we are in the context of a slave, expireIfNeeded() will
* not really try to expire the key, it only returns information
* about the "logical" status of the key: key expiring is up to the
* master in order to have a consistent view of master's data set.
*
* However, if the command caller is not the master, and as additional
* safety measure, the command invoked is a read-only command, we can
* safely return NULL here, and provide a more consistent behavior
* to clients accessign expired values in a read-only fashion, that
* will say the key as non exisitng.
*
* Notably this covers GETs when slaves are used to scale reads. */
if (server.current_client &&
server.current_client != server.master &&
server.current_client->cmd &&
server.current_client->cmd->flags & CMD_READONLY)
{
return NULL;
}
}
val = lookupKey(db,key,flags);
if (val == NULL)
server.stat_keyspace_misses++;
else
server.stat_keyspace_hits++;
return val;
}
robj:
typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
* and most significant 16 bits access time). */
int refcount;
void *ptr;
} robj;
本文标题为:Redis【二】 set|get那些事
- Numpy中如何创建矩阵并等间隔抽取数据 2023-07-28
- 基于Python制作一个简单的文章搜索工具 2023-07-28
- MySQL8.0.28安装教程详细图解(windows 64位) 2023-07-26
- 在阿里云CentOS 6.8上安装Redis 2023-09-12
- Oracle 删除大量表记录操作分析总结 2023-07-23
- SQLSERVER调用C#的代码实现 2023-07-29
- Mongodb启动报错完美解决方案:about to fork child process,waiting until server is ready for connections. 2023-07-16
- redis清除数据 2023-09-13
- 搭建单机Redis缓存服务的实现 2023-07-13
- SQL Server 2022 AlwaysOn新特性之包含可用性组详解 2023-07-29