这篇文章主要为大家介绍了redis分布式ID解决方案示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
常用的分布式ID解决方案
在分布式系统中,生成全局唯一ID是非常重要的,因为在分布式系统中,多个节点同时生成ID可能会导致ID冲突。
下面介绍几种常用的分布式ID解决方案。
UUID
UUID(通用唯一标识符)是由128位数字组成的标识符,它可以保证在全球范围内的唯一性,因为其生成算法基于时间戳、节点ID等因素。UUID可以使用Java自带的UUID类来生成,如下所示:
javaCopy code
import java.util.UUID;
public class UuidGenerator {
public static void main(String[] args) {
UUID uuid = UUID.randomUUID();
System.out.println(uuid.toString());
}
}
UUID的优点是简单易用,无需额外的配置和管理,可以直接使用Java自带的UUID类生成。但是UUID长度较长(128位),不太适合作为数据库表的主键,且不易于排序和索引。
Snowflake
Snowflake是Twitter开源的一种分布式ID生成算法,它可以生成64位的唯一ID,其中包含了时间戳、数据中心ID和机器ID等信息。Snowflake算法的Java代码如下所示:
Snowflake算法的Java代码:
javaCopy code
public class SnowflakeGenerator {
private final static long START_STMP = 1480166465631L;
private final static long SEQUENCE_BIT = 12;
private final static long MACHINE_BIT = 5;
private final static long DATACENTER_BIT = 5;
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
private long datacenterId;
private long machineId;
private long sequence = 0L;
private long lastStmp = -1L;
public SnowflakeGenerator(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStmp == lastStmp) {
sequence = (sequence + 1) & MAX_SEQUENCE;
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
sequence = 0L;
}
lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT
| datacenterId << DATACENTER_LEFT
| machineId << MACHINE_LEFT
| sequence;
}
private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}
private long getNewstmp() {
return System.currentTimeMillis();
}
}
Snowflake算法的优点是生成ID的性能高,且ID长度较短(64位),可以作为数据库表的主键,且便于排序和索引。但是需要注意,如果集群中的节点数超过了机器ID所占的位数,或者集群规模很大,时间戳位数不够用,那么就需要考虑其他的分布式ID生成算法。
Leaf
Leaf是美团点评开源的一种分布式ID生成算法,它可以生成全局唯一的64位ID。Leaf算法的Java代码如下所示:
Leaf算法的Java代码:
javaCopy code
public class LeafGenerator {
private static final Logger logger = LoggerFactory.getLogger(LeafGenerator.class);
private static final String WORKER_ID_KEY = "leaf.worker.id";
private static final String PORT_KEY = "leaf.port";
private static final int DEFAULT_PORT = 8080;
private static final int DEFAULT_WORKER_ID = 0;
private static final int WORKER_ID_BITS = 10;
private static final int SEQUENCE_BITS = 12;
private static final int MAX_WORKER_ID = (1 << WORKER_ID_BITS) - 1;
private static final int MAX_SEQUENCE = (1 << SEQUENCE_BITS) - 1;
private static final long EPOCH = 1514736000000L;
private final SnowflakeIdWorker idWorker;
public LeafGenerator() {
int workerId = SystemPropertyUtil.getInt(WORKER_ID_KEY, DEFAULT_WORKER_ID);
int port = SystemPropertyUtil.getInt(PORT_KEY, DEFAULT_PORT);
this.idWorker = new SnowflakeIdWorker(workerId, port);
logger.info("Initialized LeafGenerator with workerId={}, port={}", workerId, port);
}
public long nextId() {
return idWorker.nextId();
}
private static class SnowflakeIdWorker {
private final long workerId;
private final long port;
private long sequence = 0L;
private long lastTimestamp = -1L;
SnowflakeIdWorker(long workerId, long port) {
if (workerId < 0 || workerId > MAX_WORKER_ID) {
throw new IllegalArgumentException(String.format("workerId must be between %d and %d", 0, MAX_WORKER_ID));
}
this.workerId = workerId;
this.port = port;
}
synchronized long nextId() {
long timestamp = System.currentTimeMillis();
if (timestamp < lastTimestamp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (timestamp == lastTimestamp) {
sequence = (sequence + 1) & MAX_SEQUENCE;
if (sequence == 0L) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
return ((timestamp - EPOCH) << (WORKER_ID_BITS + SEQUENCE_BITS))
| (workerId << SEQUENCE_BITS)
| sequence;
}
private long tilNextMillis(long lastTimestamp) {
long timestamp = System.currentTimeMillis();
while (timestamp <= lastTimestamp) {
timestamp = System.currentTimeMillis();
}
return timestamp;
}
}
}
Leaf算法的特点是生成ID的速度比Snowflake算法略慢,但是可以支持更多的Worker节点。Leaf算法生成的ID由三部分组成,分别是时间戳、Worker ID和序列号,其中时间戳占用42位、Worker ID占用10位、序列号占用12位,总共64位。
以上是常见的分布式ID生成算法,当然还有其他的一些方案,如:MongoDB ID、UUID、Twitter Snowflake等。不同的方案适用于不同的业务场景,具体实现细节和性能表现也有所不同,需要根据实际情况选择合适的方案。
除了上述介绍的分布式ID生成算法,还有一些新的分布式ID生成方案不断涌现,例如Flicker的分布式ID生成算法,它使用了类似于Snowflake的思想,但是采用了不同的位数分配方式,相比Snowflake更加灵活,并且可以根据需要动态调整每个部分占用的位数。此外,Facebook还推出了ID Generation Service (IGS)方案,该方案将ID的生成和存储分离,提供了更加灵活和可扩展的方案,但是需要进行更加复杂的架构设计和实现。
针对不同的业务需求,可以设计多套分布式ID生成方案。下面是我个人的一些建议:
- 基于数据库自增ID生成:使用数据库自增ID作为全局唯一ID,可以很好的保证ID的唯一性,并且实现简单,但是并发量较高时可能会导致性能瓶颈。因此,在高并发场景下不建议使用。
- 基于UUID生成:使用UUID作为全局唯一ID,可以很好地保证ID的唯一性,但是ID长度较长(128位),不便于存储和传输,并且存在重复ID的概率非常小但不为0。因此,建议在分布式系统中使用时要考虑ID的长度和存储传输的成本。
- 基于Redis生成:使用Redis的原子性操作,可以保证ID的唯一性,并且生成ID的速度非常快,可以适用于高并发场景。但是需要注意,如果Redis宕机或者性能不足,可能会影响ID的生成效率和可用性。
- 基于ZooKeeper生成:使用ZooKeeper的序列号生成器,可以保证ID的唯一性,并且实现较为简单,但是需要引入额外的依赖和资源,并且可能会存在性能瓶颈。
选择适合自己业务场景的分布式ID生成方案,需要综合考虑ID的唯一性、生成速度、长度、存储成本、可扩展性、可用性等多个因素。同时需要注意,不同方案的实现细节和性能表现也有所不同,需要根据实际情况进行权衡和选择。
下面给出每种方案的详细代码demo:
基于数据库自增ID生成
javaCopy code
public class IdGenerator {
private static final String JDBC_URL = "jdbc:mysql://localhost:3306/test";
private static final String JDBC_USER = "root";
private static final String JDBC_PASSWORD = "password";
public long generateId() {
Connection conn = null;
PreparedStatement pstmt = null;
ResultSet rs = null;
try {
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD);
pstmt = conn.prepareStatement("INSERT INTO id_generator (stub) VALUES (null)", Statement.RETURN_GENERATED_KEYS);
pstmt.executeUpdate();
rs = pstmt.getGeneratedKeys();
if (rs.next()) {
return rs.getLong(1);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
if (rs != null) {
rs.close();
}
if (pstmt != null) {
pstmt.close();
}
if (conn != null) {
conn.close();
}
} catch (Exception e) {
e.printStackTrace();
}
}
return 0L;
}
}
基于UUID生成
javaCopy code
import java.util.UUID;
public class IdGenerator {
public String generateId() {
return UUID.randomUUID().toString().replace("-", "");
}
}
基于Redis生成
javaCopy code
import redis.clients.jedis.Jedis;
public class IdGenerator {
private static final String REDIS_HOST = "localhost";
private static final int REDIS_PORT = 6379;
private static final String REDIS_PASSWORD = "password";
private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;
private static final String ID_GENERATOR_KEY = "id_generator";
public long generateId() {
Jedis jedis = null;
try {
jedis = new Jedis(REDIS_HOST, REDIS_PORT);
jedis.auth(REDIS_PASSWORD);
long id = jedis.incr(ID_GENERATOR_KEY);
jedis.expire(ID_GENERATOR_KEY, ID_GENERATOR_EXPIRE_SECONDS);
return id;
} catch (Exception e) {
e.printStackTrace();
} finally {
if (jedis != null) {
jedis.close();
}
}
return 0L;
}
}
基于ZooKeeper生成
javaCopy code
import java.util.concurrent.CountDownLatch;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
public class IdGenerator implements Watcher {
private static final String ZK_HOST = "localhost";
private static final int ZK_PORT = 2181;
private static final int SESSION_TIMEOUT = 5000;
private static final String ID_GENERATOR_NODE = "/id_generator";
private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;
private long workerId = 0;
public IdGenerator() {
try {
ZooKeeper zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, this);
CountDownLatch latch = new CountDownLatch(1);
latch.await();
if (zk.exists(ID_GENERATOR_NODE, false) == null) {
zk.create(ID_GENERATOR_NODE, null, Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}
workerId = zk.getChildren(ID_GENERATOR_NODE, false).size();
zk.create(ID_GENERATOR_NODE + "/worker_" + workerId, null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
} catch (Exception e) {
e.printStackTrace();
}
}
public long generateId() {
ZooKeeper zk = null;
try {
zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, null);
CountDownLatch latch = new CountDownLatch(1);
latch.await();
zk.create(ID_GENERATOR_NODE + "/id_", null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, (rc, path, ctx, name) -> {}, null);
byte[] data = zk.getData(ID_GENERATOR_NODE + "/worker_" + workerId, false, null);
long id = Long.parseLong(new String(data)) * 10000 + zk.getChildren(ID_GENERATOR_NODE, false).size();
return id;
} catch (Exception e) {
e.printStackTrace();
} finally {
if (zk != null) {
try {
zk.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
return 0L;
}
@Override
public void process(WatchedEvent event) {
if (event.getState() == Event.KeeperState.SyncConnected) {
System.out.println("Connected to ZooKeeper");
CountDownLatch latch = new CountDownLatch(1);
latch.countDown();
}
}
}
注意,这里使用了ZooKeeper的临时节点来协调各个工作节点,如果一个工作节点挂掉了,它的临时节点也会被删除,这样可以保证每个工作节点获得的ID是唯一的。
以上就是各种分布式ID生成方案的详细代码demo,实际上,每种方案都有其优缺点,应根据具体业务场景和系统架构选择合适的方案。
以上就是redis分布式ID解决方案示例详解的详细内容,更多关于redis分布式ID的资料请关注编程学习网其它相关文章!
本文标题为:redis分布式ID解决方案示例详解
- MySQL8.0.28安装教程详细图解(windows 64位) 2023-07-26
- Numpy中如何创建矩阵并等间隔抽取数据 2023-07-28
- Mongodb启动报错完美解决方案:about to fork child process,waiting until server is ready for connections. 2023-07-16
- redis清除数据 2023-09-13
- SQL Server 2022 AlwaysOn新特性之包含可用性组详解 2023-07-29
- 基于Python制作一个简单的文章搜索工具 2023-07-28
- 在阿里云CentOS 6.8上安装Redis 2023-09-12
- 搭建单机Redis缓存服务的实现 2023-07-13
- Oracle 删除大量表记录操作分析总结 2023-07-23
- SQLSERVER调用C#的代码实现 2023-07-29