Sklearn built-in function for Hard margin SVM(硬边距支持向量机的Sklearn内置函数)
本文介绍了硬边距支持向量机的Sklearn内置函数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我知道软边距支持向量机有一个内置函数,如下所示。
from sklearn.svm import SVC
clf = SVC(C=1, kernel = 'linear')
clf.fit(X, y)
但对于硬间隔支持向量机,我们需要C=0
,对吗?但当我让C=0
时,代码报告错误ValueError: C <= 0
。
推荐答案
SCRICKIT-LEARN中没有硬边距支持向量机,因为它不是很有用的模型。从数值上讲,只需设置C=1e-10
就可以非常接近它,但这可能会导致收敛问题,因为在对偶公式中,支持向量机C是拉格朗日乘子的上界。
这篇关于硬边距支持向量机的Sklearn内置函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:硬边距支持向量机的Sklearn内置函数


猜你喜欢
- 如何使用PYSPARK从Spark获得批次行 2022-01-01
- YouTube API v3 返回截断的观看记录 2022-01-01
- 检查具有纬度和经度的地理点是否在 shapefile 中 2022-01-01
- 我如何透明地重定向一个Python导入? 2022-01-01
- ";find_element_by_name(';name';)";和&QOOT;FIND_ELEMENT(BY NAME,';NAME';)";之间有什么区别? 2022-01-01
- 使用 Cython 将 Python 链接到共享库 2022-01-01
- 我如何卸载 PyTorch? 2022-01-01
- 计算测试数量的Python单元测试 2022-01-01
- CTR 中的 AES 如何用于 Python 和 PyCrypto? 2022-01-01
- 使用公司代理使Python3.x Slack(松弛客户端) 2022-01-01