Numpy how to use np.cumprod to vectorize python for i in range function(Numpy如何在Range函数中使用np.umprod向量化i的python)
本文介绍了Numpy如何在Range函数中使用np.umprod向量化i的python的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有两个python函数。第一个:
import numpy as np
import math
mt = np.array([1, 2, 3, 4, 5, 6, 7])
age, interest = 3, 0.5
def getnpx(mt, age, interest):
val = 1
initval = 1
for i in range(age, 7):
val = val * mt[i]
intval = val / (1 + interest) ** (i + 1 - age)
initval = initval + intval
return initval
输出为:
214.03703703703704
为了加快速度,我使用Numpy对其进行了矢量化:
def getnpx_(mt, age, interest):
return 1 + (np.cumprod(mt[age:7]) / (1 + interest)**np.arange(1, 8 - age)).sum()
getnpx_(mt, age, interest)
运行正常,输出仍为:
214.03703703703704
但是,我不知道如何通过numpy向量化我的另一个函数:
def getnpx2(mt, age, interest):
val = mt[age]
initval = 1
for i in range(age + 2, 8):
val *= mt[i - 1]
intval = val / (1 + interest) ** (i - age - 1) / mt[age]
initval = initval + intval
return initval
任何朋友都可以帮助您?
推荐答案
您的函数是:
def getnpx_(mt, age, interest):
return (np.cumprod(mt[age:7]) / (1 + interest)**np.arange(7 - age)).sum() / mt[age]
这篇关于Numpy如何在Range函数中使用np.umprod向量化i的python的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:Numpy如何在Range函数中使用np.umprod向量化i的python


猜你喜欢
- 如何在 Python 的元组列表中对每个元组中的第一个值求和? 2022-01-01
- padding='same' 转换为 PyTorch padding=# 2022-01-01
- 沿轴计算直方图 2022-01-01
- 如何将一个类的函数分成多个文件? 2022-01-01
- 分析异常:路径不存在:dbfs:/databricks/python/lib/python3.7/site-packages/sampleFolder/data; 2022-01-01
- pytorch 中的自适应池是如何工作的? 2022-07-12
- python-m http.server 443--使用SSL? 2022-01-01
- python check_output 失败,退出状态为 1,但 Popen 适用于相同的命令 2022-01-01
- 使用Heroku上托管的Selenium登录Instagram时,找不到元素';用户名'; 2022-01-01
- 如何在 python3 中将 OrderedDict 转换为常规字典 2022-01-01