Keras model.predict() slower on first iteration then gets faster(Kera Model.Forecast()在第一次迭代时速度较慢,然后变得更快)
本文介绍了Kera Model.Forecast()在第一次迭代时速度较慢,然后变得更快的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正尝试在for循环中多次运行model.predict()
,并计算对同一图像执行该操作所需的时间。这些数据将用于平均运行预测所需的时间。
如果我在单独的脚本中运行预测,在我的MacBook上它将在大约300ms秒内运行。如果我随后在for循环中迭代地运行它,则第一次迭代所用的时间将从300ms左右开始,然后在其余迭代中下降到80ms。
是否因为第一个预测保留在内存中,而Kera正在幕后做一些事情来缩短预测时间?
知道为什么会发生这种情况吗?代码如下:
#!/usr/bin/env python3
import argparse
import keras
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.inception_v3 import preprocess_input
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress CPU warnings
import time
from timeit import default_timer as timer
import datetime
import csv
import numpy as np
"""Define all model permutations for MobileNetsV1 and MobileNetsV2"""
# Define all V1 model permutations
# V1_MODELS = [(128,0.25)]
V1_MODELS = [(128, 0.25), (128, 0.5), (128, 0.75), (128, 1)]#,
# (160, 0.25), (160, 0.5), (160, 0.75), (160, 1),
# (192, 0.25), (192, 0.5), (192, 0.75), (192, 1),
# (224, 0.25), (224, 0.5), (224, 0.75), (224, 1)]
# Define all V2 model permutations
V2_MODELS = [(96, 0.35), (96, 0.5), (96, 0.75), (96, 1), (96, 1.3), (96, 1.4),
(128, 0.35), (128, 0.5), (128, 0.75), (128, 1), (128, 1.3), (128, 1.4),
(160, 0.35), (160, 0.5), (160, 0.75), (160, 1), (160, 1.3), (160, 1.4),
(192, 0.35), (192, 0.5), (192, 0.75), (192, 1), (192, 1.3), (192, 1.4),
(224, 0.35), (224, 0.5), (224, 0.75), (224, 1), (224, 1.3), (224, 1.4)]
def save_result(model, time):
with open(RESULTS_FILE_NAME, 'a', newline='') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow([model, time])
# file = open(RESULTS_FILE_NAME, 'a')
# file.write(text + '
')
# file.close()
if __name__ == "__main__":
# Set up command line argument parser
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, help='Path to the image to be tested', default='images/cheetah.jpg')
parser.add_argument('--model', type=int, help='Specify model architecture as an integer V1: 1, V2: 2', default=1)
parser.add_argument('--test', type=int, help='Specify the number of tests per model to perform', default=5)
args = parser.parse_args()
RESULTS_FILE_NAME = "results/MobileNetV{0}_result_{1}.csv".format(args.model, datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
# Holds total run time (each individual model time added to this variable)
total_time = 0
# Select model parameter list based on command line arguments (default = V1)
if args.model == 1:
MODEL_LIST = V1_MODELS
elif args.model == 2:
MODEL_LIST = V2_MODELS
for model_params in MODEL_LIST:
size = model_params[0]
alpha = model_params[1]
# Select MobileNet model based on command line arguments (default = V1)
if args.model == 1:
model = keras.applications.mobilenet.MobileNet(input_shape=(size, size, 3),
alpha=alpha,
depth_multiplier=1,
dropout=1e-3,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000)
elif args.model == 2:
model = keras.applications.mobilenet_v2.MobileNetV2(input_shape=(size, size, 3),
alpha=1.0,
depth_multiplier=1,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000)
# model.summary()
for num in range(args.test):
# Start timing
start_time = timer()
# Preprocess the image TODO: should this be included in timing?
img = keras.preprocessing.image.load_img(args.image, target_size=(size, size))
x = keras.preprocessing.image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# Predict the category of the input image
predictions = model.predict(x, verbose=1)
# Print predictions
#print('Predicted:', decode_predictions(predictions, top=3))
# End timing
end_time = timer()
# Print total run time
print("Size: {0} Alpha: {1}".format(size, alpha))
print("Time Taken: {} seconds".format(end_time-start_time))
# save_result(str(model_params), str(end_time-start_time))
total_time = total_time + (end_time-start_time)
print("######################")
print("Total Time: {} seconds".format(total_time))
推荐答案
预测函数在第一次(且仅第一次)调用predict
或predict_on_batch
期间执行。这是第一次调用花费更多时间的原因之一。
详情请参见source code。特别要注意_make_predict_function
是何时调用的,以及它是如何工作的。
这篇关于Kera Model.Forecast()在第一次迭代时速度较慢,然后变得更快的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:Kera Model.Forecast()在第一次迭代时速度较慢,然后变得更快
猜你喜欢
- pytorch 中的自适应池是如何工作的? 2022-07-12
- 如何在 python3 中将 OrderedDict 转换为常规字典 2022-01-01
- 分析异常:路径不存在:dbfs:/databricks/python/lib/python3.7/site-packages/sampleFolder/data; 2022-01-01
- padding='same' 转换为 PyTorch padding=# 2022-01-01
- 如何将一个类的函数分成多个文件? 2022-01-01
- 使用Heroku上托管的Selenium登录Instagram时,找不到元素';用户名'; 2022-01-01
- 沿轴计算直方图 2022-01-01
- python-m http.server 443--使用SSL? 2022-01-01
- python check_output 失败,退出状态为 1,但 Popen 适用于相同的命令 2022-01-01
- 如何在 Python 的元组列表中对每个元组中的第一个值求和? 2022-01-01