How does pytorch broadcasting work?(pytorch 广播是如何工作的?)
问题描述
torch.add(torch.ones(4,1), torch.randn(4))
产生一个尺寸为:torch.Size([4,4])
.
有人可以提供这背后的逻辑吗?
示例 2:
:
T
和 F
分别代表 True
和 False
并指示我们允许广播的维度(来源:
torch.add(torch.ones(4,1), torch.randn(4))
produces a Tensor with size: torch.Size([4,4])
.
Can someone provide a logic behind this?
PyTorch broadcasting
is based on numpy broadcasting semantics which can be understood by reading numpy broadcasting rules
or PyTorch broadcasting guide. Expounding the concept with an example would be intuitive to understand it better. So, please see the example below:
In [27]: t_rand
Out[27]: tensor([ 0.23451, 0.34562, 0.45673])
In [28]: t_ones
Out[28]:
tensor([[ 1.],
[ 1.],
[ 1.],
[ 1.]])
Now for torch.add(t_rand, t_ones)
, visualize it like:
# shape of (3,)
tensor([ 0.23451, 0.34562, 0.45673])
# (4, 1) | | | | | | | | | | | |
tensor([[ 1.],____+ | | | ____+ | | | ____+ | | |
[ 1.],______+ | | ______+ | | ______+ | |
[ 1.],________+ | ________+ | ________+ |
[ 1.]])_________+ __________+ __________+
which should give the output with tensor of shape (4,3)
as:
# shape of (4,3)
In [33]: torch.add(t_rand, t_ones)
Out[33]:
tensor([[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673]])
Also, note that we get exactly the same result even if we pass the arguments in a reverse order as compared to the previous one:
# shape of (4, 3)
In [34]: torch.add(t_ones, t_rand)
Out[34]:
tensor([[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673]])
Anyway, I prefer the former way of understanding for more straightforward intuitiveness.
For pictorial understanding, I culled out more examples which are enumerated below:
Example-1:
Example-2:
:
T
and F
stand for True
and False
respectively and indicate along which dimensions we allow broadcasting (source: Theano).
Example-3:
Here are some shapes where the array b
is broadcasted appropriately to match the shape of the array a
.
这篇关于pytorch 广播是如何工作的?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:pytorch 广播是如何工作的?


- YouTube API v3 返回截断的观看记录 2022-01-01
- 使用公司代理使Python3.x Slack(松弛客户端) 2022-01-01
- 如何使用PYSPARK从Spark获得批次行 2022-01-01
- 我如何卸载 PyTorch? 2022-01-01
- ";find_element_by_name(';name';)";和&QOOT;FIND_ELEMENT(BY NAME,';NAME';)";之间有什么区别? 2022-01-01
- 计算测试数量的Python单元测试 2022-01-01
- CTR 中的 AES 如何用于 Python 和 PyCrypto? 2022-01-01
- 检查具有纬度和经度的地理点是否在 shapefile 中 2022-01-01
- 使用 Cython 将 Python 链接到共享库 2022-01-01
- 我如何透明地重定向一个Python导入? 2022-01-01