Deeply nested JSON response to pandas dataframe(对 Pandas 数据帧的深度嵌套 JSON 响应)
问题描述
我是 python/pandas 的新手,在将嵌套的 JSON 转换为 Pandas 数据帧时遇到了一些问题.我正在向数据库发送查询并返回一个 JSON 字符串.
I am new to python/pandas and I am having some issues with converting a nested JSON to pandas dataframe. I am sending a query to a database and getting a JSON string back.
这是一个深度嵌套的 JSON 字符串,包含多个数组.来自数据库的响应包含数千行.以下是 JSON 字符串中一行的一般结构:
It's a deeply nested JSON string that contains several arrays. The response from the database contains thousands of rows. Here is the general structure of one row in the JSON string:
{
"ID": "123456",
"profile": {
"criteria": [
{
"type": "type1",
"name": "name1",
"value": "7",
"properties": []
},
{
"type": "type2",
"name": "name2",
"value": "6",
"properties": [
{
"type": "MAX",
"name": "",
"value": "100"
},
{
"type": "MIN",
"name": "",
"value": "5"
}
]
},
{
"type": "type3",
"name": "name3",
"value": "5",
"properties": []
}
]
}
}
{
"ID": "456789",
"profile": {
"criteria": [
{
"type": "type4",
"name": "name4",
"value": "6",
"properties": []
}
]
}
}
我想使用 python pandas 将这个 JSON 字符串展平.我在使用 json_normalize 时遇到了问题,因为这是一个深度嵌套的 JSON 字符串:
I want to flatten this JSON string using python pandas. I had problems using json_normalize since this is a deeply nested JSON string:
from cassandra.cluster import Cluster
import pandas as pd
from pandas.io.json import json_normalize
def pandas_factory(colnames, rows):
return pd.DataFrame(rows, columns=colnames)
cluster = Cluster(['xxx.xx.x.xx'], port=yyyy)
session = cluster.connect('nnnn')
session.row_factory = pandas_factory
json_string = session.execute('select json ......')
df = json_string ._current_rows
df_normalized= json_normalize(df)
print(df_normalized)
当我运行此代码时,我收到一个关键错误:
When i run this code, i get a Key error:
KeyError: 0
我需要帮助将此 JSON 字符串转换为只有一些选定列的数据框,看起来像这样:(其余数据可以跳过)
I need help converting this JSON string to a dataframe with only some selected columns that looks something like this: (The rest of the data can be skipped)
ID | criteria | type | name | value |
123456 1 type1 name1 7
123456 2 type2 name2 6
123456 3 type3 name3 5
456789 1 type4 name4 6
我试图在这里找到类似的问题,但我似乎无法将其应用于我的 JSON 字符串.
I tried to find similar problems on here but I can't seem to apply it to my JSON string.
感谢任何帮助!:)
返回的 json 字符串是一个 查询响应对象: ResultSet .我认为这就是我在使用时遇到一些问题的原因:
The json string that is retured is a query response object: ResultSet . I think thats why I'm having some issues with using:
json_string= session.execute('select json profile from visning')
temp = json.loads(json_string)
并得到错误:
TypeError: the JSON object must be str, not 'ResultSet'
编辑 #2:
只是为了看看我在做什么,我使用以下方法打印了结果查询:
Just to see what I'm working with, I printed the the result query by using:
for line in session.execute('select json.....'):
print(line)
得到这样的东西:
Row(json='{"ID": null, "profile": null}')
Row(json='{"ID": "123", "profile": {"criteria": [{"type": "type1", "name": "name1", "value": "10", "properties": []}, {"type": "type2", "name": "name2", "value": "50", "properties": []}, {"type": "type3", "name": "name3", "value": "40", "properties": []}]}}')
Row(json='{"ID": "456", "profile": {"criteria": []}}')
Row(json='{"ID": "789", "profile": {"criteria": [{"type": "type4", "name": "name4", "value": "5", "properties": []}]}}')
Row(json='{"ID": "987", "profile": {"criteria": [{"type": "type5", "name": "name5", "value": "70", "properties": []}, {"type": "type6", "name": "name6", "value": "60", "properties": []}, {"type": "type7", "name": "name7", "value": "2", "properties": []}, {"type": "type8", "name": "name8", "value": "7", "properties": []}]}}')
我遇到的问题是将此结构转换为可在 json.loads() 中使用的 json 字符串:
The issue I'm having is converting this structure to a json string that can be used in json.loads():
json_string= session.execute('select json profile from visning')
json_list = list(json_string)
string= ''.join(list(map(str, json_list)))
temp = json.loads(string) <-- creates error json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)
编辑 #3:
按照下面评论中的要求,打印
As requested below in the comments, printing
for line in session.execute('select json.....'):
print((line.json))
得到输出:
{"ID": null, "profile": null}
{"ID": "123", "profile": {"criteria": [{"type": "type1", "name": "name1", "value": "10", "properties": []}, {"type": "type2", "name": "name2", "value": "50", "properties": []}, {"type": "type3", "name": "name3", "value": "40", "properties": []}]}}
{"ID": "456", "profile": {"criteria": []}}
{"ID": "789", "profile": {"criteria": [{"type": "type4", "name": "name4", "value": "5", "properties": []}]}}
{"ID": "987", "profile": {"criteria": [{"type": "type5", "name": "name5", "value": "70", "properties": []}, {"type": "type6", "name": "name6", "value": "60", "properties": []}, {"type": "type7", "name": "name7", "value": "2", "properties": []}, {"type": "type8", "name": "name8", "value": "7", "properties": []}]}}
推荐答案
一个硬编码的例子...
A hardcoded example...
import pandas as pd
temp = [{
"ID": "123456",
"profile": {
"criteria": [
{
"type": "type1",
"name": "name1",
"value": "7",
"properties": []
},
{
"type": "type2",
"name": "name2",
"value": "6",
"properties": [
{
"type": "MAX",
"name": "",
"value": "100"
},
{
"type": "MIN",
"name": "",
"value": "5"
}
]
},
{
"type": "type3",
"name": "name3",
"value": "5",
"properties": []
}
]
}
},
{
"ID": "456789",
"profile": {
"criteria": [
{
"type": "type4",
"name": "name4",
"value": "6",
"properties": []
}
]
}
}]
cols = ['ID', 'criteria', 'type', 'name', 'value']
rows = []
for data in temp:
data_id = data['ID']
criteria = data['profile']['criteria']
for d in criteria:
rows.append([data_id, criteria.index(d)+1, *list(d.values())[:-1]])
df = pd.DataFrame(rows, columns=cols)
这绝不是优雅的.它更像是一个快速而肮脏的解决方案,因为我不知道 JSON 数据的确切格式 - 但是,根据您提供的内容,我上面的代码将生成所需的 DataFrame.
This is by no means elegant. It is more of a quick and dirty solution, as I don't know how the JSON data is exactly formatted - however, based on what you've provided, my code above will produce the desired DataFrame.
ID criteria type name value
0 123456 1 type1 name1 7
1 123456 2 type2 name2 6
2 123456 3 type3 name3 5
3 456789 1 type4 name4 6
此外,如果您需要加载"JSON 数据,您可以像这样使用 json
库:
Additionally, if you need to 'load' the JSON data, you can use the json
library like so:
import json
temp = json.loads(json_string)
# Or from a file...
with open('some_json.json') as json_file:
temp = json.load(json_file)
请注意json.loads
和json.load
的区别.
这篇关于对 Pandas 数据帧的深度嵌套 JSON 响应的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:对 Pandas 数据帧的深度嵌套 JSON 响应
- 我如何透明地重定向一个Python导入? 2022-01-01
- 我如何卸载 PyTorch? 2022-01-01
- CTR 中的 AES 如何用于 Python 和 PyCrypto? 2022-01-01
- 使用公司代理使Python3.x Slack(松弛客户端) 2022-01-01
- 使用 Cython 将 Python 链接到共享库 2022-01-01
- YouTube API v3 返回截断的观看记录 2022-01-01
- 计算测试数量的Python单元测试 2022-01-01
- 检查具有纬度和经度的地理点是否在 shapefile 中 2022-01-01
- 如何使用PYSPARK从Spark获得批次行 2022-01-01
- ";find_element_by_name(';name';)";和&QOOT;FIND_ELEMENT(BY NAME,';NAME';)";之间有什么区别? 2022-01-01