Python 中内置的最大堆 API

built-in max heap API in Python(Python 中内置的最大堆 API)

本文介绍了Python 中内置的最大堆 API的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

默认 heapq 是最小队列实现,想知道是否有最大队列选项?谢谢.

Default heapq is min queue implementation and wondering if there is an option for max queue? Thanks.

我尝试了使用 _heapify_max 作为最大堆的解决方案,但是如何动态处理 push/pop 元素?看来 _heapify_max 只能在初始化期间使用.

I tried the solution using _heapify_max for max heap, but how to handle dynamically push/pop element? It seems _heapify_max could only be used during initialization time.

import heapq

def heapsort(iterable):
    h = []
    for value in iterable:
        heapq.heappush(h, value)
    return [heapq.heappop(h) for i in range(len(h))]

if __name__ == "__main__":

    print heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])

编辑,尝试 _heapify_max 似乎不适用于动态推送/弹出元素.我试过两种方法输出一样,输出都是,[0, 1, 2, 3, 4, 5, 6, 7, 8, 9].

Edit, tried _heapify_max seems not working for dynamically push/pop elements. I tried both methods output the same, both output is, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].

def heapsort(iterable):
    h = []
    for value in iterable:
        heapq.heappush(h, value)
    return [heapq.heappop(h) for i in range(len(h))]

def heapsort2(iterable):
    h = []
    heapq._heapify_max(h)
    for value in iterable:
        heapq.heappush(h, value)
    return [heapq.heappop(h) for i in range(len(h))]

if __name__ == "__main__":

    print heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
    print heapsort2([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])

提前致谢,林

推荐答案

过去我只是简单地使用 sortedcontainers 的 SortedList 为此,如:

In the past I have simply used sortedcontainers's SortedList for this, as:

> a = SortedList()
> a.add(3)
> a.add(2)
> a.add(1)
> a.pop()
3

它不是堆,但速度很快,可以根据需要直接工作.

It's not a heap, but it's fast and works directly as required.

如果你绝对需要它成为一个堆,你可以创建一个通用的否定类来保存你的项目.

If you absolutely need it to be a heap, you could make a general negation class to hold your items.

class Neg():
    def __init__(self, x):
        self.x = x

    def __cmp__(self, other):
        return -cmp(self.x, other.x)

def maxheappush(heap, item):
    heapq.heappush(heap, Neg(item))

def maxheappop(heap):
    return heapq.heappop(heap).x

但这会占用更多内存.

这篇关于Python 中内置的最大堆 API的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本文标题为:Python 中内置的最大堆 API