groupingBy 后排序列表

sorting Lists after groupingBy(groupingBy 后排序列表)

本文介绍了groupingBy 后排序列表的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想知道,流(或收集器)中是否已经实现了将列表排序为值的功能.例如.以下代码均生成按年龄排序的按性别分组的人员列表.第一个解决方案有一些开销排序(看起来有点邋遢).第二种解决方案需要对每个人进行两次检查,但效果很好.

I am wondering, if there is already an implemented feature in streams (or Collectors) which has sorted Lists as values. E.g. the following codes both produce gender-grouped Lists of persons, sorted by age. The first solution has some overhead sorting (and looks a little bit scruffy). The second solution needs to look at every person twice but does the job in a pretty way.

先排序,然后在一个流中分组:

First sorting then grouping in one stream:

Map<Gender, List<Person>> sortedListsByGender = (List<Person>) roster
        .stream()
        .sorted(Person::compareByAge)
        .collect(Collectors.groupingBy(Person::getGender));

先分组,然后对每个值进行排序:

First grouping, then sorting every value:

Map<Gender, List<Person>> sortedListsByGender = (List<Person>) roster
        .stream()
        .collect(Collectors.groupingBy(Person::getGender));
sortedListsByGender.values()
        .forEach(list -> Collections.sort(list, Person::compareByAge));

我只是想知道,如果已经实现了一些东西,它会在一次运行中完成,比如 groupingBySorted.

I am just wondering, if there is already something implemented, which does this in one run, like groupingBySorted.

推荐答案

collect 操作之前对流使用 sorted(comparator) 时,流必须缓冲整个流内容能够对其进行排序,与之后对较小的组列表进行排序相比,排序可能涉及该缓冲区内更多的数据移动.所以性能不如对各个组进行排序,尽管如果启用了并行处理,实现将使用多个内核.

When using sorted(comparator) on the stream before the collect operation, the stream has to buffer the entire stream contents to be able to sort it and the sorting may involve much more data movement within that buffer, compared to sorting the smaller lists of the groups afterwards. So the performance is not as good as sorting the individual groups though the implementation will utilize multiple cores if parallel processing has been enabled.

但请注意,使用 sortedListsByGender.values().forEach(…) 不是可并行化的操作,甚至使用 sortedListsByGender.values().parallelStream().forEach(…) 只允许并行处理组,而每个排序操作仍然是顺序的.

But note that using sortedListsByGender.values().forEach(…) is not a parallelizable operation and even using sortedListsByGender.values().parallelStream().forEach(…) would only allow parallel processing of groups while each sort operation still is sequential.

当在收集器中执行排序操作时

When performing the sort operation within a collector as in

static <T> Collector<T,?,List<T>> toSortedList(Comparator<? super T> c) {
    return Collectors.collectingAndThen(
        Collectors.toCollection(ArrayList::new), l->{ l.sort(c); return l; } );
}

Map<Gender, List<Person>> sortedListsByGender = roster.stream()
    .collect(Collectors.groupingBy(Person::getGender, toSortedList(Person::compareByAge)));

排序操作的行为相同(感谢 Tagir Valeev 纠正我),但您可以轻松检查插入时排序策略的执行情况.只需将收集器实现更改为:

the sort operation behaves the same (thanks to Tagir Valeev for correcting me), but you can easily check how a sort-on-insertion strategy performs. Just change the collector implementation to:

static <T> Collector<T,?,List<T>> toSortedList(Comparator<? super T> c) {
    return Collectors.collectingAndThen(
        Collectors.toCollection(()->new TreeSet<>(c)), ArrayList::new);
}

为了完整起见,如果您希望收集器首先插入排序到 ArrayList 以避免最后的复制步骤,您可以使用更详细的收集器,如下所示:

For completeness, if you want a collector which inserts sorted into an ArrayList in the first place to avoid the final copy step, you can use a more elaborated collector like this:

static <T> Collector<T,?,List<T>> toSortedList(Comparator<? super T> c) {
    return Collector.of(ArrayList::new,
        (l,t) -> {
            int ix=Collections.binarySearch(l, t, c);
            l.add(ix<0? ~ix: ix, t);
        },
        (list1,list2) -> {
            final int s1=list1.size();
            if(list1.isEmpty()) return list2;
            if(!list2.isEmpty()) {
                list1.addAll(list2);
                if(c.compare(list1.get(s1-1), list2.get(0))>0)
                    list1.sort(c);
            }
            return list1;
        });
}

它对于顺序使用很有效,但它的合并功能不是最佳的.底层排序算法将受益于预先排序的范围,但必须首先找到这些范围,尽管我们的合并函数实际上知道这些范围.不幸的是,JRE 中没有公共 API 允许我们利用这些信息(有效;我们可以将 subLists 传递给 binarySearch 但为 list2 可能会变得太昂贵).如果我们想进一步提高并行执行的性能,我们必须重新实现排序算法的合并部分:

It’s efficient for the sequential usage but its merge function is not optimal. The underlying sort algorithm will benefit from presorted ranges but has to find these ranges first despite our merge function actually knows these ranges. Unfortunately, there’s no public API in the JRE allowing us to utilize these information (efficiently; we can pass subLists to binarySearch but creating a new sub list for each element of list2 may turn out to be too expensive). If we want to raise the performance of the parallel execution further, we have to re-implement the merge part of the sorting algorithm:

static <T> Collector<T,?,List<T>> toSortedList(Comparator<? super T> c) {
    return Collector.of(ArrayList::new,
        (l,t) -> l.add(insertPos(l, 0, l.size(), t, c), t),
        (list1,list2) -> merge(list1, list2, c));
}
static <T> List<T> merge(List<T> list1, List<T> list2, Comparator<? super T> c) {
    if(list1.isEmpty()) return list2;
    for(int ix1=0, ix2=0, num1=list1.size(), num2=list2.size(); ix2<num2; ix2++, num1++) {
        final T element = list2.get(ix2);
        ix1=insertPos(list1, ix1, num1, element, c);
        list1.add(ix1, element);
        if(ix1==num1) {
            while(++ix2<num2) list1.add(list2.get(ix2));
            return list1;
        }
    }
    return list1;
}
static <T> int insertPos(
    List<? extends T> list, int low, int high, T t, Comparator<? super T> c) {
    high--;
    while(low <= high) {
        int mid = (low+high)>>>1, cmp = c.compare(list.get(mid), t);
        if(cmp < 0) low = mid + 1;
        else if(cmp > 0) high = mid - 1;
        else {
            mid++;
            while(mid<=high && c.compare(list.get(mid), t)==0) mid++;
            return mid;
        }
    }
    return low;
}

请注意,与简单的基于 binarySearch 的插入不同,最后一种解决方案是一种稳定的排序实现,即在您的情况下,Person 具有相同的年龄和 性别不会改变它们的相对顺序,如果源流有一个定义的相遇顺序.

Note that this last solution, unlike the simple binarySearch based insertion, is a stable sort implementation, i.e. in your case, Persons with the same age and Gender won’t change their relative order, if the source stream has a defined encounter order.

这篇关于groupingBy 后排序列表的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本文标题为:groupingBy 后排序列表