Custom Kernel GpuMat with float(带浮点的自定义内核 GpuMat)
问题描述
我正在尝试使用 GpuMat
数据编写自定义内核来查找图像像素的反余弦值.当 GPU 有 CV_8UC1
数据但不能使用字符计算反余弦时,我可以在上传数据时上传、下载和更改值.但是,当我尝试将我的 GPU 转换为 CV_32FC1
类型(浮点数)时,我在下载部分遇到了非法内存访问错误.这是我的代码:
I'm trying to write a custom kernel using GpuMat
data to find the arc cosine of an image's pixels. I can upload, download, and change values when I upload data when the GPU has CV_8UC1
data but chars cannot be used to calculate arc cosines. However, when I try to convert my GPU to CV_32FC1
type (floats) I get an illegal memory access error during the download part. Here is my code:
//.cu code
#include <cuda_runtime.h>
#include <stdlib.h>
#include <iostream>
#include <stdio.h>
__global__ void funcKernel(const float* srcptr, float* dstptr, size_t srcstep, const size_t dststep, int cols, int rows){
int rowInd = blockIdx.y*blockDim.y+threadIdx.y;
int colInd = blockIdx.x*blockDim.x+threadIdx.x;
if(rowInd >= rows || colInd >= cols)
return;
const float* rowsrcptr=srcptr+rowInd*srcstep;
float* rowdstPtr= dstptr+rowInd*dststep;
float val = rowsrcptr[colInd];
if((int) val % 90 == 0)
rowdstPtr[colInd] = -1 ;
else{
float acos_val = acos(val);
rowdstPtr[colInd] = acos_val;
}
}
int divUp(int a, int b){
return (a+b-1)/b;
}
extern "C"
{
void func(const float* srcptr, float* dstptr, size_t srcstep, const size_t dststep, int cols, int rows){
dim3 blDim(32,8);
dim3 grDim(divUp(cols, blDim.x), divUp(rows,blDim.y));
std::cout << "calling kernel from func
";
funcKernel<<<grDim,blDim>>>(srcptr,dstptr,srcstep,dststep,cols,rows);
std::cout << "done with kernel call
";
cudaDeviceSynchronize();
}
//.cpp code
void callKernel(const GpuMat &src, GpuMat &dst){
float* p = (float*)src.data;
float* p2 =(float*) dst.data;
func(p,p2,src.step,dst.step,src.cols,src.rows);
}
int main(){
Mat input = imread("cat.jpg",0);
Mat float_input;
input.convertTo(float_input,CV_32FC1);
GpuMat d_frame,d_output;
Size size = float_input.size();
d_frame.upload(float_input);
d_output.create(size,CV_32FC1);
callKernel(d_frame,d_output);
Mat output(d_output);
return 0;
}
当我运行程序时,我的编译器告诉我:
When I run the program my compiler tells me this:
OpenCV 错误:Gpu API 调用(遇到非法内存访问)在副本中,文件/home/mobile/opencv-2.4.9/modules/dynamicuda/include/opencv2/dynamicuda/dynamicuda.hpp,在抛出一个实例后调用第 882 行终止'cv::异常'什么():/home/mobile/opencv-2.4.9/modules/dynamicuda/include/opencv2/dynamicuda/dynamicuda.hpp:882:错误:(-217)在函数中遇到非法内存访问复制
OpenCV Error: Gpu API call (an illegal memory access was encountered) in copy, file /home/mobile/opencv-2.4.9/modules/dynamicuda/include/opencv2/dynamicuda/dynamicuda.hpp, line 882 terminate called after throwing an instance of 'cv::Exception' what(): /home/mobile/opencv-2.4.9/modules/dynamicuda/include/opencv2/dynamicuda/dynamicuda.hpp:882: error: (-217) an illegal memory access was encountered in function copy
推荐答案
您将图像 step
视为 float
偏移量.它是从一行到下一行的字节偏移量.
You are treating image step
as if it is a float
offset. It is a byte offset from one row to the next.
试试这样的:
const float* rowsrcptr= (const float *)(((char *)srcptr)+rowInd*srcstep);
float* rowdstPtr= (float *) (((char *)dstptr)+rowInd*dststep);
来自文档:
step – 每个矩阵行占用的字节数.
step – Number of bytes each matrix row occupies.
添加 正确的cuda错误检查到你的代码(例如到func
).您可以使用 cuda-memcheck
运行您的代码,以查看生成无效读/写的实际内核故障.
It's also a good idea to add proper cuda error checking to your code (e.g. to func
). And you can run your code with cuda-memcheck
to see the actual kernel failure generating the invalid reads/writes.
这篇关于带浮点的自定义内核 GpuMat的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:带浮点的自定义内核 GpuMat
- C++ 协变模板 2021-01-01
- 近似搜索的工作原理 2021-01-01
- 与 int by int 相比,为什么执行 float by float 矩阵乘法更快? 2021-01-01
- 从python回调到c++的选项 2022-11-16
- 一起使用 MPI 和 OpenCV 时出现分段错误 2022-01-01
- 使用/clr 时出现 LNK2022 错误 2022-01-01
- STL 中有 dereference_iterator 吗? 2022-01-01
- Stroustrup 的 Simple_window.h 2022-01-01
- 静态初始化顺序失败 2022-01-01
- 如何对自定义类的向量使用std::find()? 2022-11-07