What is the fastest way to compute large power of 2 modulo a number(计算 2 模数的大幂的最快方法是什么)
本文介绍了计算 2 模数的大幂的最快方法是什么的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
对于 1 <= N <= 1000000000
,我需要计算 2N mod 1000000007
,它一定非常快!
我目前的做法是:
For 1 <= N <= 1000000000
, I need to compute 2N mod 1000000007
, and it must be really fast!
My current approach is:
ull power_of_2_mod(ull n) {
ull result = 1;
if (n <= 63) {
result <<= n;
result = result % 1000000007;
}
else {
ull one = 1;
one <<= 63;
while (n > 63) {
result = ((result % 1000000007) * (one % 1000000007)) % 1000000007;
n -= 63;
}
for (int i = 1; i <= n; ++i) {
result = (result * 2) % 1000000007;
}
}
return result;
}
但它似乎不够快.有什么想法吗?
but it doesn't seem to be fast enough. Any idea?
推荐答案
这样会更快(C 代码):
This will be faster (code in C):
typedef unsigned long long uint64;
uint64 PowMod(uint64 x, uint64 e, uint64 mod)
{
uint64 res;
if (e == 0)
{
res = 1;
}
else if (e == 1)
{
res = x;
}
else
{
res = PowMod(x, e / 2, mod);
res = res * res % mod;
if (e % 2)
res = res * x % mod;
}
return res;
}
这篇关于计算 2 模数的大幂的最快方法是什么的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:计算 2 模数的大幂的最快方法是什么
猜你喜欢
- 使用/clr 时出现 LNK2022 错误 2022-01-01
- 静态初始化顺序失败 2022-01-01
- STL 中有 dereference_iterator 吗? 2022-01-01
- 与 int by int 相比,为什么执行 float by float 矩阵乘法更快? 2021-01-01
- 从python回调到c++的选项 2022-11-16
- C++ 协变模板 2021-01-01
- Stroustrup 的 Simple_window.h 2022-01-01
- 如何对自定义类的向量使用std::find()? 2022-11-07
- 一起使用 MPI 和 OpenCV 时出现分段错误 2022-01-01
- 近似搜索的工作原理 2021-01-01